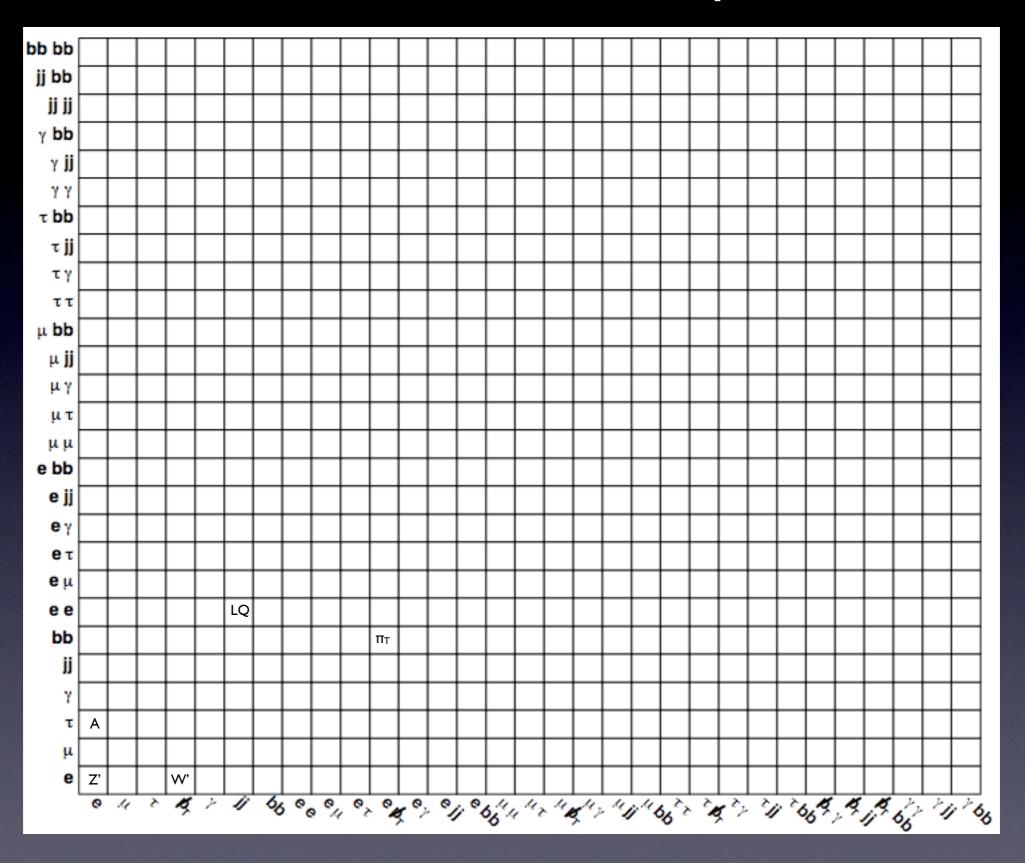


Bruce Knuteson

Global Analysis of High-pT Data

The problem The solution Vista Sleuth Surprise! Bard Quaero TurboSim

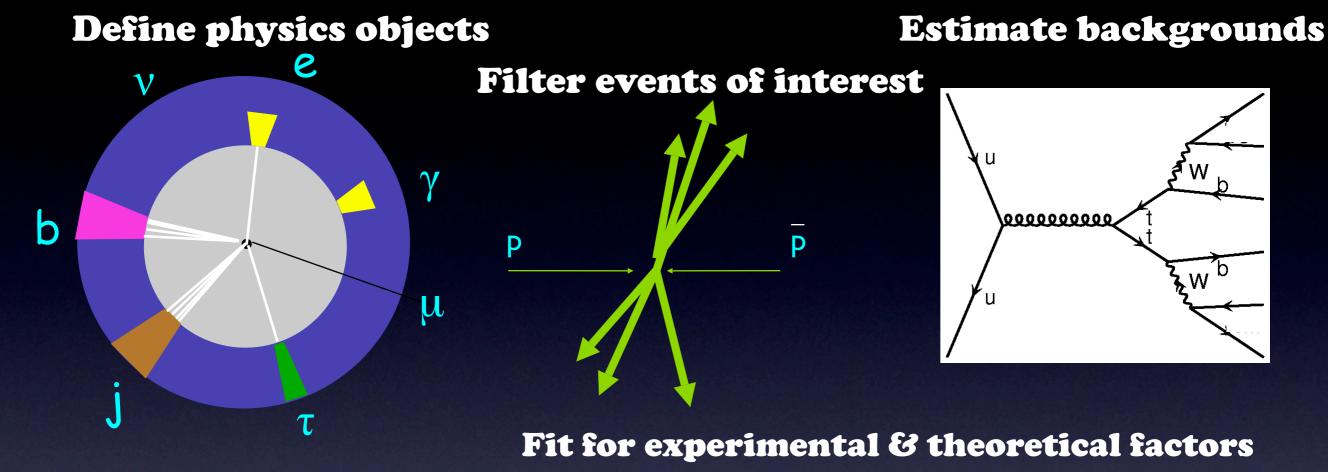

LHC New Physics Signatures Workshop, University of Michigan, Jan 6 2008

The problem

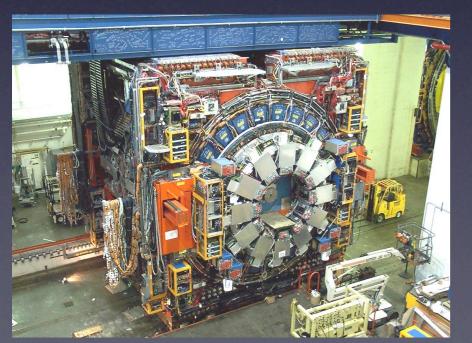
model space is really, really big

10¹⁰⁵

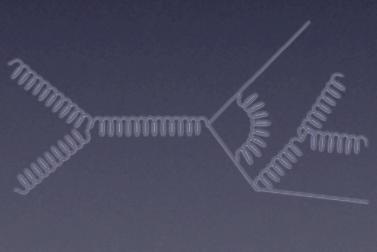
The solution: Look everywhere



Bruce Knuteson


Problem Solution Vista Sleuth Surprise! Bard Quaero TurboSim 3

VISTA ALGORITHM


hep-ex/0402029 hep-ex/0504041 arXiv:0712.1311 arXiv:0712.2534

Simulate detector response (mis)Id

reconstructed μ b е е 0.62 2e-3 0.02 0.28 μ 0.51 τ 0.02 0.01 0.04 0.90 6e-3 γ 0.03 0.68 0.21 1e-5 3e-3 3e-4 2e-2 1e-4 b 1e-4 | 5e-5 | 0.65 | 0.35 1e-4 1e-4

Vista correction factors (global fit)

Bruce Knuteson

CDF Run II (927 pb ⁻¹)						
Category	Explanation	Value	Error	Error(%)		
luminosity	CDF integrated luminosity	927.1	20	2.2		
k-factor	cosmic_ph	0.686	0.05	7.3		
k-factor	cosmic_j	0.4464	0.014	3.1		
k-factor	$1\gamma 1j$ photon+jet(s)	0.9492	0.04	4.2		
k-factor	$1\gamma 2 \mathrm{j}$	1.205	0.05	4.1		
k-factor	$1\gamma 3j$	1.483	0.07	4.7		
k-factor	$1\gamma 4j +$	1.968	0.16	8.1		
k-factor	$2\gamma 0$ j diphoton(+jets)	1.809	0.08	4.4		
k-factor	$2\gamma 1 \mathrm{j}$	3.417	0.24	7.0		
k-factor	$2\gamma 2j+$	1.305	0.16	12.3		
k-factor	W0j W (+jets)	1.453	0.027	1.9		
k-factor	W1j	1.059	0.03	2.8		
k-factor	W2j	1.021	0.03	2.9		
k-factor	W3j+	0.7582	0.05	6.6		
k-factor	Z0j Z (+jets)	1.419	0.024	1.7		
k-factor	Z1j	1.177	0.04	3.4		
k-factor	Z_{j+}	1.035	0.05	4.8		
k-factor	2j $\hat{p}_T < 150$ dijet	0.9599	0.022	2.3		
k-factor	$2j \ 150 < \hat{p}_T$	1.256	0.028	2.2		
k-factor	$3j \ \hat{p}_T \! < \! 150 \ \mathrm{multijet}$	0.9206	0.021	2.3		
k-factor	$3j \ 150 < \hat{p}_T$	1.36	0.032	2.4		
k-factor	$4j \hat{p}_T < 150$	0.9893	0.025	2.5		
k-factor	4j 150 $< \hat{p}_T$	1.705	0.04	2.3		
k-factor	5j+ low	1.252	0.05	4.0		
misId	$p(e \rightarrow e)$ central	0.9864	0.006	0.6		
misId	$p(e \rightarrow e) plug$	0.9334	0.009	1.0		
misId	$p(\mu \rightarrow \mu)$ CMUP	0.8451	0.008	0.9		
misId	$p(\mu \rightarrow \mu) CMX$	0.915	0.011	1.2		
misId	$p(\gamma \rightarrow \gamma)$ central	0.9738	0.018	1.8		
misId	$p(\gamma \rightarrow \gamma) plug$	0.9131	0.018	2.0		
misId	$p(b \rightarrow b)$ central	0.9969	0.04	4.0		
misId	$p(e \rightarrow \gamma) plug$	0.04452	0.012	27.0		
misId	$p(q \rightarrow e)$ central	9.71×10^{-5}	1.9×10^{-6}	2.0		
misId	$p(q \rightarrow e)$ plug	0.0008761	1.8×10^{-5}	2.1		
misId	$p(q \rightarrow \mu)$	1.157×10^{-5}	2.7×10^{-7}	2.3		
misId	$p(j \rightarrow b) 25 < p_T$	0.01684	0.00027	1.6		
misId	$p(q \to \tau) \ 15 < p_T < 60$	0.003414	0.00012	3.5		
misId	$p(q \rightarrow \tau) 60 < p_T < 200$	0.000381	4×10^{-5}	10.5		
misId	$p(q \rightarrow \gamma)$ central	0.0002651	1.5×10^{-5}	5.7		
misId		0.001591	0.00013	8.2		
	$p(q \rightarrow \gamma)$ plug $p(q \rightarrow trig)$ central $n = 25$	0.9758	0.007	8.2 0.7		
trigger	$p(e \rightarrow trig)$ central, $p_T > 25$	0.835	0.015	1.8		
trigger	$p(e \rightarrow trig) plug, p_T > 25$ $p(\mu \rightarrow trig) CMUP, p_T > 25$	0.9166	0.007	0.8		
trigger			0.007	1.0		
trigger	$p(\mu \rightarrow trig) CMX, p_T > 25$	0.9613	0.01	1.0		

THE VISTA RESULT

arXiv:0712.1311 (submitted to PRD 10-Dec-2007) arXiv:0712.2534 (submitted to PRL 15-Dec-2007)

Georgios Choudalakis MIT

Conor Henderson MIT

Ray Culbertson FNAL

Vista o	utput
---------	-------

CDF Run II (927 pb⁻¹)

Discrepant Distributions (σ)

6.7

4.4

2.8

3.7

3.5

3

2.7

2.5

mass(j2)/j2_pt 7.1

mass(j3)/j3_pt 6.2

mass(j2,j3,j4) 4.2 mass(j1)/j1_pt 3.9 mass(j2,j3,j5) 3.5 deltaR(j2,j3) 3.4 mass(j2,j3,j4,j5) 3.3

mass(j4)/j4_pt 2.5

mass(tau+,j1,j2)

mass(tau+,j2)

mass(tau+,j1)

mass(b)/b_pt 9.9

mass(j)/j_pt 4.3

deltaR(j,b) 4.1

minMass(j) 3.9

mass(j,b) 3.6

minDeltaR(j,j) 9.9

mass(j2,j3) 9.9

deltaR(j2,j3) 9.9 deltaEta(j2,j3) 9.9 mass(j2)/j2_pt 9.9

mass(j2)/j2_pt 3.4

mass(b)

uncl_pt

clusteredObjectsRecoil_pt 2.6

7.2

3.5

mass(j1)

mass(j2,j3)

mass(j2)

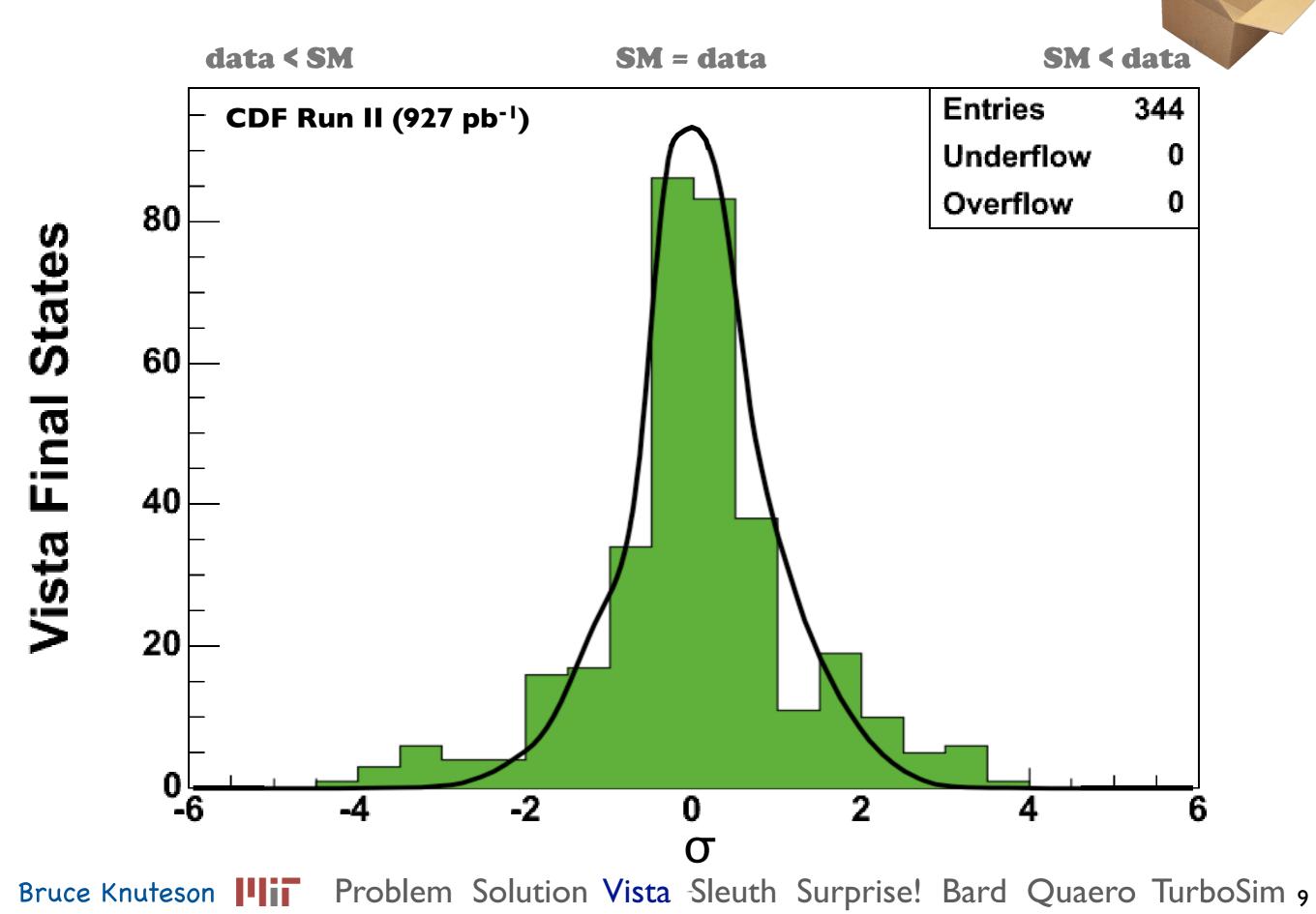
sumPt

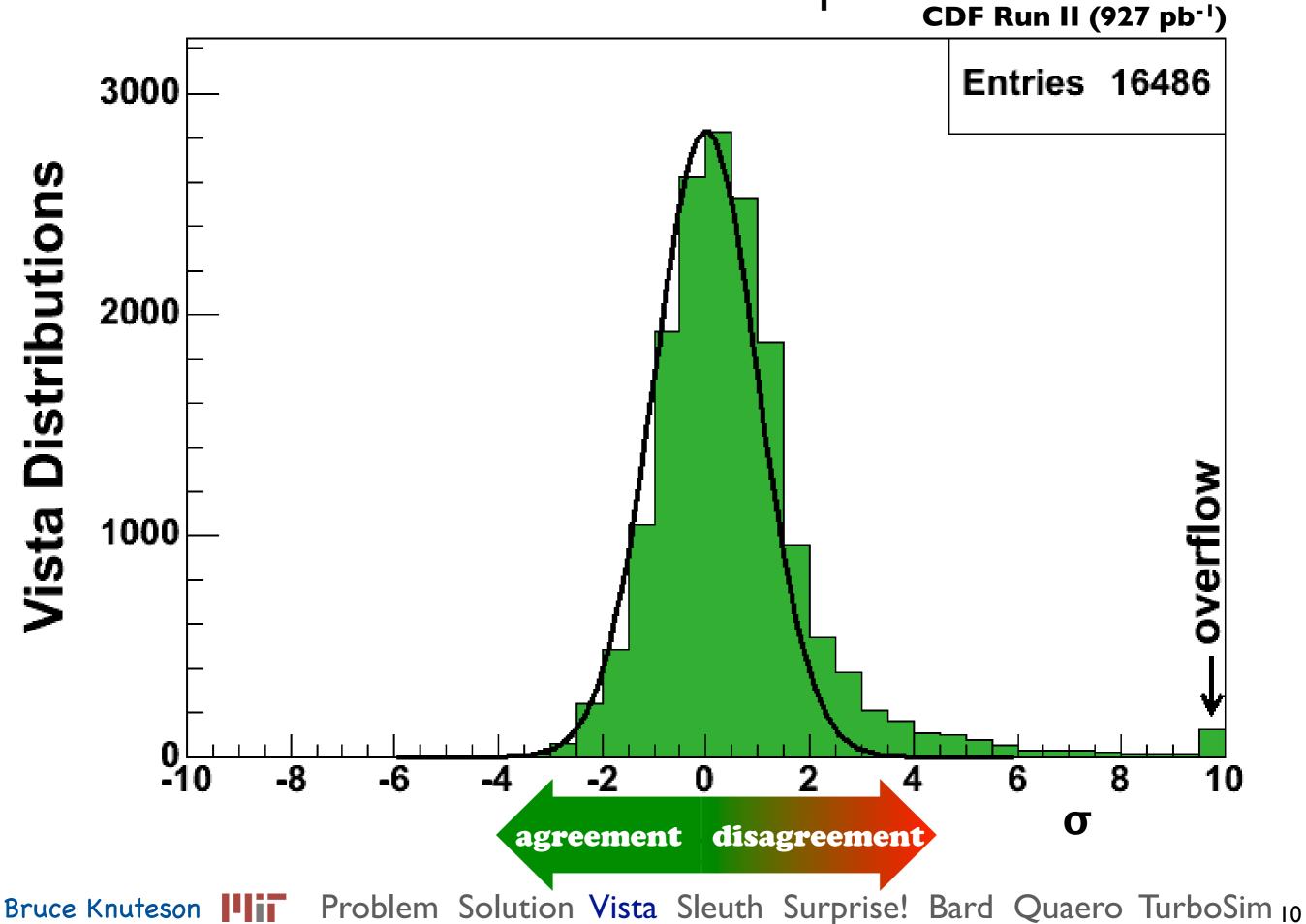
j1_pt

able of final states					CDF R
Final State	Plots	Observed	Expected	Discrepancy (σ)	SM composition
3j1tau+	[plots]	71	(stat. uncertainty only) 113.7 +- 3.6	-2.3	Pythia jj 40 < pT < 60 = 27.5. Pythia jj 60 < pT < 90 = 18.2. Pythia jj 18 < pT < 40 = 17.8. Pythia jj 200 < pT < 300 = 17.7. Pythia jj 150 < pT < 200 = 15.7. Pythia jj 90 < pT < 120 = 6.8. Pythia jj 120 < pT < 150 = 3.8. Pythia bj 40 < pT < 60 = 1.4. Pythia jj 300 < pT < 400 = 1.3. Pythia bj 60 < pT < 90 = 1. Pythia bj 200 < pT < 300 = 0.7. Pythia bj 150 < pT < 200 = 0.4. Pythia bj 18 < pT < 40 = 0.3. Pythia gamma j 80 < pT = 0.2. Pythia bj 120 < pT < 150 = 0.2. Pythia bj 90 < pT < 120 = 0.1. Pythia gamma j 22 < pT < 45 = 0.1
5j	[plots]	1661	1902.9 +- 50.8	-1.7	Pythia jj 40 < pT < 60 = 685.8, Pythia jj 18 < pT < 40 = 553.4, Pythia jj 60 < pT < 90 = 429.9, Pythia jj 90 < pT < 120 = 98.8, Pythia bj 40 < pT < 60 = 41.2, Pythia bj 60 < pT < 90 = 28.2, Pythia bj 18 < pT < 40 = 27, Pythia jj 120 < pT < 150 = 17.4, Pythia jj 150 < pT < 200 = 64. Pythia bj 90 < pT < 120 = 6.1, Overlaid events = 5.5, Pythia bj 120 < pT < 150 = 1.2, Pythia bj 150 < pT < 200 = 0.7, MadEvent W(→ev) jjjj = 0.5, Pythia jj 200 < pT < 300 = 0.5, Herwig ttbar = 0.2
2j1tau+	[plots]	233	296.5 +- 5.6	-1.6	Pythia jj 40 < pT < 60 = 95.9, Pythia jj 18 < pT < 40 = 67.3, Pythia jj 60 < pT < 90 = 54.3, Pythia jj 200 < pT < 300 = 30.9, Pythia jj 150 < pT < 200 = 19.6, Pythia jj 90 < pT < 120 = 10.8, Pythia jj 120 < pT < 150 = 5.4, Pythia bj 40 < pT < 60 = 4, Pythia jj 300 < pT < 400 = 2, Pythia bj 18 < pT < 40 = 1.6, Pythia bj 60 < pT < 90 = 1.5, Pythia bj 200 < pT < 300 = 0.8, Pythia bj 150 < pT < 200 = 0.5, Pythia bj 90 < pT < 120 = 0.4, Pythia Z(→τ τ) = 0.3, Pythia gamma j 80 < pT = 0.3, MadIivent Z(→ee) j = 0.1, Pythia gamma j 22 < pT < 45 = 0.1, Pythia bj 120 < pT < 150 = 0.1
2j2tau+	[plots]	6	27 +- 4.6	-1.4	Pythia jj 18 < pT < 40 = 11.7, Pythia jj 40 < pT < 60 = 9.5, Pythia jj 60 < pT < 90 = 4.1, Pythia bj 40 < pT < 60 = 0.8, Pythia jj 90 < pT < 120 = 0.7, Pythia bj 18 < pT < 40 = 0.1
1b1e+1j	[plots]	2207	2015.4 +- 28.7	+1.4	Pythia jj 40 < pT < 60 = 411.6, Pythia bj 40 < pT < 60 = 295.7, Pythia jj 60 < pT < 90 = 233.5, Pythia jj 18 < pT < 40 = 225.5, Pythia bj 18 < pT < 40 = 162.8, Pythia bj 60 < pT < 90 = 155.8, MadEvent W(\rightarrow ev) jj = 91.4, Pythia gamma j 22 < pT < 45 = 79.7, MadEvent Z(\rightarrow ee) j = 74.4, Pythia jj 90 < pT < 120 = 25.5, Pythia gamma j 45 < pT < 80 = 27.5, Pythia bj 90 < pT < 120 = 26.6, Pythia gamma j 12 < pT < 22 = 26.5, MadEvent Z(\rightarrow ee) jj = 23.4, Alpgen W(\rightarrow ev) bb = 13.3, MadEvent W(\rightarrow ev) j = 12.4, Pythia jj 100 < pT < 150 = 11.6, Pythia gamma j 80 < pT = 10.4, MadEvent W(\rightarrow ev) jjj = 10.4, MadEvent Z(\rightarrow ee) = 9.6, Alpgen W(\rightarrow ev) bb j = 8.8, Pythia W(\rightarrow ev) bb j = 8.8, Pythia jj 150 < pT < 200 = 7.5, Herwig ttbar = 5.1, MadEvent Z(\rightarrow ee) gamma = 4.8, Pythia bj 120 < pT < 150 = 4.5, MadEvent Z(\rightarrow ee) bb = 4.1, MadEvent Z(\rightarrow ee) jjj = 2.9, Alpgen W(\rightarrow ev) bb jj = 2.1, Pythia bj 150 < pT < 200 = 1.8, Pythia jj 200 < pT < 300 = 1.5, MadEvent W(\rightarrow ev) jjjj = 1.1, MadEvent W(\rightarrow ev) gamma = 0.8, Overlaid events = 0.8, MadEvent W(\rightarrow ev) = 0.6, Pythia bj 10 < pT < 18 = 0.6, Pythia ZZ = 0.5, MadEvent gamma gamma jj = 0.3, Pythia bj 200 < pT < 300 = 0.3, Pythia Z(\rightarrow et τ) = 0.3, Pythia WZ = 0.2
3j_sumPt0-400	[plots]	35436	37294.6 +- 524.3	-1.1	Pythia jj 18 < pT < 40 = 18129.1, Pythia jj 40 < pT < 60 = 12273.7, Pythia jj 60 < pT < 90 = 3950.7, Pythia bj 18 < pT < 40 = 751.6, Pythia jj 10 < pT < 18 = 749, Pythia bj 40 < pT < 60 = 540.5, Pythia jj 90 < pT < 120 = 520.8, Pythia bj 60 < pT < 90 = 179.5, Pythia jj 120 < pT < 150 = 96.7, Pythia jj 150 < pT < 200 = 27.6, Pythia bj 90 < pT < 120 = 19.7, Pythia gamma j 22 < pT < 45 = 13.8, Pythia bj 10 < pT < 18 = 13.8, Overlaid events = 7.9, Pythia gamma j 12 < pT < 22 = 7.9, MadEvent Z(→ee) jj = 3.9, Pythia gamma j 8 < pT < 12 = 2, Pythia bj 120 < pT < 150 = 2, MadEvent W(→ev) jjj = 2, MadEvent W(→ev) jjj = 2
1e+3j1pmiss	[plots]	1954	1751.6 +- 42	+1.1	MadEvent W(\rightarrow ev) jj = 705.6, MadEvent W(\rightarrow ev) jjj = 595.3, MadEvent W(\rightarrow ev) j = 132.6, MadEvent W(\rightarrow ev) jjjj = 85, Pythia W(\rightarrow ev) = 56.4, MadEvent W(\rightarrow ev) = 45.8, Herwig ttbar = 26.7, MadEvent Z(\rightarrow ee) jj = 25.9, Alpgen W(\rightarrow ev) bb j = 10.3, MadEvent Z(\rightarrow ee) jjj = 9.2, MadEvent W(\rightarrow ev) gamma = 8.1, MadEvent Z(\rightarrow ee) j = 7.7, Alpgen W(\rightarrow ev) bb = 6.8, Pythia jj 60 < pT < 90 = 5.8, Alpgen W(\rightarrow ev) bb jj = 5.1, Pythia jj 90 < pT < 120 = 4.4, Overlaid events = 3.6, Pythia jj 40 < pT < 60 = 2.2, Pythia gamma j 80 < pT = 1.9, Pythia jj 150 < pT < 200 = 1.5, Pythia jj 120 < pT < 150 = 1.5, Pythia jj 200 < pT < 300 = 1.3, Pythia bj 60 < pT < 90 = 1.3, Pythia gamma j 45 < pT < 80 = 1.2, MadEvent Z(\rightarrow ee) bb = 0.7, Pythia bj 40 < pT < 60 = 0.7, MadEvent Z(\rightarrow ee) gamma = 0.6, Pythia WZ = 0.6, Pythia Z(\rightarrow ttbar = 0.5, MadEvent gamma gamma jj = 0.5, Pythia bj 90 < pT < 120 = 0.4, Pythia bj 150 < pT < 200 = 0.4, Cosmic (photon_25_tio) = 0.4, Pythia j 18 < pT < 40 = 0.4, Pythia ZZ = 0.3, MadEvent W(\rightarrow uv) gamma = 0.3, MadEvent Z(\rightarrow vv)

Bruce Knuteson Problem Solution Vista Sleuth Surprise! Bard Quaero TurboSim 7

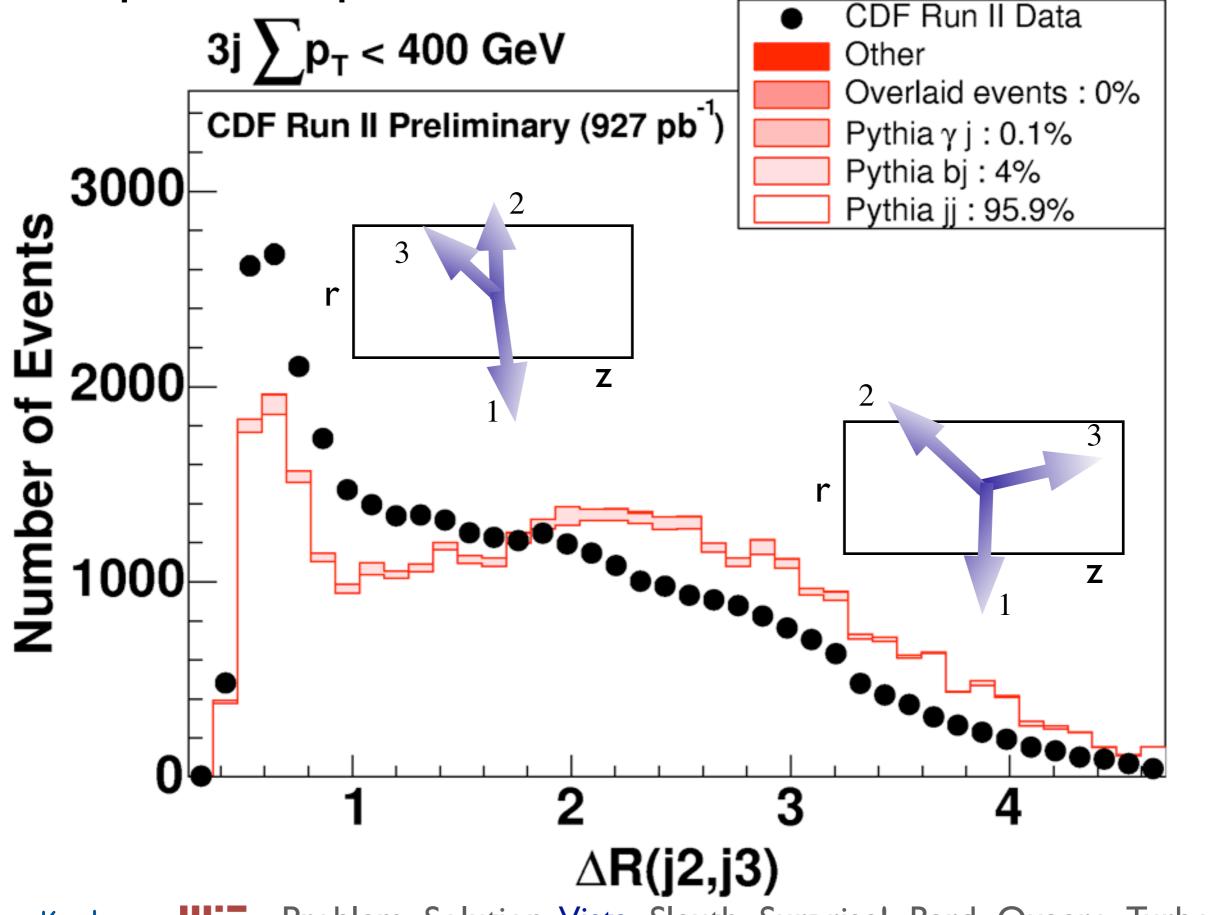
gamma=0.2, MadEvent W(→µv) jjj=0.2

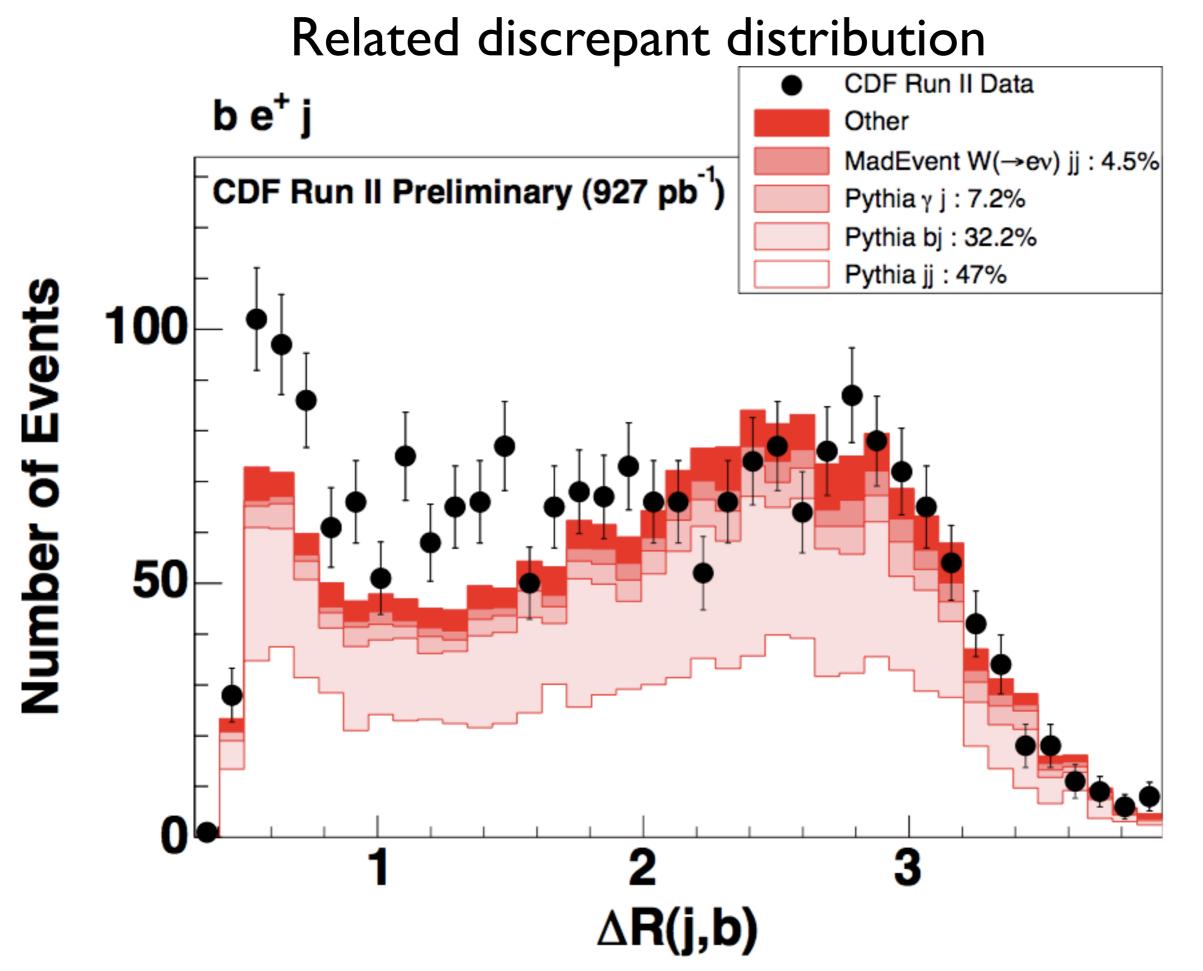

CDF Run II (927 pb⁻¹)



Final State	Data	Background	Final State	Data	Background	Final State	Data	Background
$3j\tau +$	71	113.7 ± 3.6	2e+j	13	9.8 ± 2.2	$e + \gamma p$	141	144.2 ± 6
5j	1661	1902.9 ± 50.8	2e+e-	12	4.8 ± 1.2	$e + \mu - pb$	54	42.6 ± 2.7
2j7+	233	296.5 ± 5.6	20+	23	36.1 ± 3.8	$e + \mu + p$	13	10.9 ± 1.3
b-e+j	2207	2015.4 ± 28.7	$2b \Sigma p_T > 400 \text{ GeV}$	3.27	335.8 ± 7	$e + \mu$ -	153	127.6 ± 4.2
$3j \Sigma p_{T} < 400 \text{ GeV}$	35436	37294.6 ± 524.3	$2b \Sigma p_T < 400 \text{ GeV}$	187	173.1 ± 7.1	e+j	386880	392614 ± 5031.8
e+3j≠	1954		2b3j $\Sigma p_T < 400 \text{ GeV}$		33.5 ± 5.5	e+j27	14	15.9 ± 2.9
be+2j	798		$2b2j \Sigma p_T > 400 \text{ GeV}$	355	326.3 ± 8.4	e+j7+	79	79.3 ± 2.9
			-	56	80.2 ± 5		162	
$3j \neq \Sigma p_T > 400 \text{ GeV}$			2b2j $\Sigma p_T < 400 \mathrm{GeV}$			e+j <i>τ</i> -		148.8 ± 7.6
$e + \mu +$	26		$^{2b2j\gamma}$	16	15.4 ± 3.6	e+j z i		57391.7 ± 661.6
$e + \gamma$	636		$2b\gamma$	37	31.7 ± 4.8	e+jγø	52	76.2 ± 9
e+3j	28656	27281.5 ± 405.2	$2 \text{bj} \Sigma p_T > 400 \text{ GeV}$	415	393.8 ± 9.1	$e+j\mu-p$	22	13.1 ± 1.7
b-5j	131	95 ± 4.7	2bj $\Sigma p_T < 400 { m GeV}$	161	195.8 ± 8.3	e+jµ-	28	26.8 ± 2.3
j27+	50	85.6 ± 8.2	$2 \text{bj} p \ \Sigma p_T > 400 \text{GeV}$	28	23.2 ± 2.6	e+e-4j	103	113.5 ± 5.9
j = +	74	125 ± 13.6	2bjγ	25	24.7 ± 4.3	e + e - 3j	456	473 ± 14.6
$b \not = \Sigma p_T > 400 \mathrm{GeV}$	10	29.5 ± 4.6	2bc+2jp	15	12.3 ± 1.6	e + e - 2jp	30	39 ± 4.6
e+jy	286	369.4 ± 21.1	2be+2j	30	30.5 ± 2.5	e+e-2j	2149	2152 ± 40.1
e+jø-	29		2be+j	28	29.1 ± 2.8	e+e-++	14	11.1 ± 2
$2j \Sigma p_T < 400 \text{ GeV}$		92437.3 ± 1354.5	2be+	48	45.2 ± 3.7	e+e-p	491	487.9 ± 12
be+3j	356		7+7-	498	428.5 ± 22.7	e+e-y	127	132.3 ± 4.2
Sj	11		77+	177	204.4 ± 5.4	e+e-j		10669.3 ± 123.5
75	57	35.6 ± 4.9	710	1952	1945.8 ± 77.1	e+e-jp	157	144 ± 11.2
6j	335	298.4 ± 14.7	$\mu + \tau +$	18	19.8 ± 2.3	e+e-jγ	26	45.6 ± 4.7
$4j \Sigma p_T > 400 \text{ GeV}$	39665	40898.8 ± 649.2	$\mu + \tau$ -	151	179.1 ± 4.7	e+e-	58344	58575.6 ± 603.9
4 j $\Sigma p_T < 400~{\rm GeV}$	8241	8403.7 ± 144.7	$\mu + p$	321351	320500 ± 3475.5	ъбј	24	15.5 ± 2.3
$4j2\gamma$	38	57.5 ± 11	$\mu + p \tau$	22	25.8 ± 2.7	b4j $\Sigma p_T > 400 \text{GeV}$	13	9.2 ± 1.8
4j++	20	36.9 ± 2.4	$\mu + \gamma$	269	285.5 ± 5.9	b4j $\Sigma p_T < 400 \mathrm{GeV}$	464	499.2 ± 12.4
$4j \neq \Sigma_{PT} > 400 \text{ GeV}$	516	525.2 ± 34.5	$\mu + \gamma p$	269	282.2 ± 6.6	b3j $\Sigma p_T > 400 \text{GeV}$	5354	5285 ± 72.4
4j7#	28		$\mu + \mu - p$	49	61.4 ± 3.5	b3j $\Sigma_{PT} < 400 \text{GeV}$	1639	1558.9 ± 24.1
417	3693		$\mu + \mu - \gamma$	32	29.9 ± 2.6	$b3j \neq \Sigma p_T > 400 \text{ GeV}$	111	116.8 ± 11.2
4jµ+	576		μ+μ-		10845.6 ± 96	b3j7	182	194.1 ± 8.8
	232		12~		2200.3 ± 35.2		37	34.1 ± 3.3
4jµ+p ⁱ				2196		$b3j\mu + p$		
4jµ+µ-	17		j2~10	38	27.3 ± 3.2	$b3j\mu +$	47	52.2 ± 3
37	13		j++	563	585.7 ± 10.2	$b2\gamma$	15	14.6 ± 2.1
$3j \Sigma p_T > 400 \text{ GeV}$	75894	75939.2 ± 1043.9	$j p \Sigma p_T > 400 \text{ GeV}$	4183	4209.1 ± 56.1	b2j $\Sigma p_T > 400 \text{GeV}$	8812	8576.2 ± 97.9
3j27	145	178.1 ± 7.4	jγ	49052	48743 ± 546.3	b2j $\Sigma p_T < 400 \mathrm{GeV}$	4691	4646.2 ± 57.7
$3j \neq \Sigma p_T < 400 \text{ GeV}$	20	30.9 ± 14.4	jy++	106	104 ± 4.1	b2j p $\Sigma p_T > 400~{\rm GeV}$	198	209.2 ± 8.3
$3j\gamma\tau +$	13	11 ± 2	3710	913	965.2 ± 41.5	b2j-y	429	425.1 ± 13.1
3jγp	83	102.9 ± 11.1	j#+	33462	34026.7 ± 510.1	$b2j\mu + p$	-4.6	40.1 ± 2.7
Sjγ	11424	11506.4 ± 190.6	jµ+7-	29	37.5 ± 4.5	$b2j\mu +$	56	60.6 ± 3.4
3jµ+p	1114	1118.7 ± 27.1	jµ+≠-	10	9.6 ± 2.1	b7+	19	19.9 ± 2.2
$3j\mu + \mu -$	61		$j\mu + p$	45728	46316.4 ± 568.2	by	976	1034.8 ± 15.6
3jµ+	2132		$j\mu + \gamma p$	78	69.8 ± 9.9	byp	18	16.7 ± 3.1
$3bj \Sigma p_T > 400 \text{ GeV}$			$j\mu + \gamma$	70	98.4 ± 12.1	5μ+	303	263.5 ± 7.9
-								
$2\tau +$	316		$j\mu + \mu -$	1977	2093.3 ± 74.7	$b\mu + p$	204	218.1 ± 6.4
$2\gamma p$	161		e+4j	7144		bj $\Sigma p_T > 400 \text{ GeV}$	9060	9275.7 ± 87.8
27	8482	8349.1 ± 84.1	e+4jp	403	363 ± 9.9	bj $\Sigma p_T < 400 { m GeV}$	7236	
$2j \Sigma p_T > 400 \text{ GeV}$	93408	92789.5 ± 1138.2	$e+3j\tau$ -	11	7.6 ± 1.6	bj27	13	17.6 ± 3.3
$2j2\gamma$	645	612.6 ± 18.8	$e+3j\gamma$	27	21.7 ± 3.4	bj7+	13	12.9 ± 1.8
$2j\tau + \tau$	15	25 ± 3.5	$e+2\gamma$	47	$74.5~\pm~5$	$b j \not = \Sigma p_T > 400 \text{ GeV}$	53	60.4 ± 19.9
$2j \not = \Sigma PT > 400 \text{ GeV}$	74	106 ± 7.8	e+2j	126665	122457 ± 1672.6	bjγ	937	989.4 ± 20.6
$2j \neq \Sigma p_T < 400 \text{ GeV}$	43	37.7 ± 100.2	e+2j+-	53	37.3 ± 3.9	bjγp¢	34	30.5 ± 4
2j7		33259.9 ± 397.6	$e+2j\tau+$	20	24.7 ± 2.3	bjµ+p	104	112.6 ± 4.4
$2j\gamma\tau +$	48		e+2jp		12130.1 ± 159.4	bjµ+	173	141.4 ± 4.8
2jγ¢	403		$c+2j\gamma$	101	88.9 ± 6.1	be+3jp	68	52.2 ± 2.2
	7287		e+τ-	609	555.9 ± 10.2	be+2jp	87	65 ± 3.3
2jµ+p 2iu iu⊄								
$2j\mu + \gamma p$	13		$e + \tau +$	2:25	211.2 ± 4.7	be+p	330	347.2 ± 6.9
$2j\mu + \gamma$	41		c + p	476424		be+jø	211	176.6 ± 5
$2j\mu + \mu$ -	374		c+p+-	48	35 ± 2.7	be+e-j	22	34.6 ± 2.6
2jµ+	9513	9362.3 ± 166.8	$e + p \tau +$	20	$18.7~\pm~1.9$	be+e-	62	55 ± 3.1

Vista final state normalizations


Vista kinematic shapes



Statistical fluctuation

- 2. Detector effect
- 3. Poor prediction
- 4. Plausible interpretation

Sample discrepant distribution (parton showering suspected)

a quasi-model-independent search strategy for new physics

Assumptions:

- I. Exclusive final state
- Large ∑p⊤
- 3. An excess

present

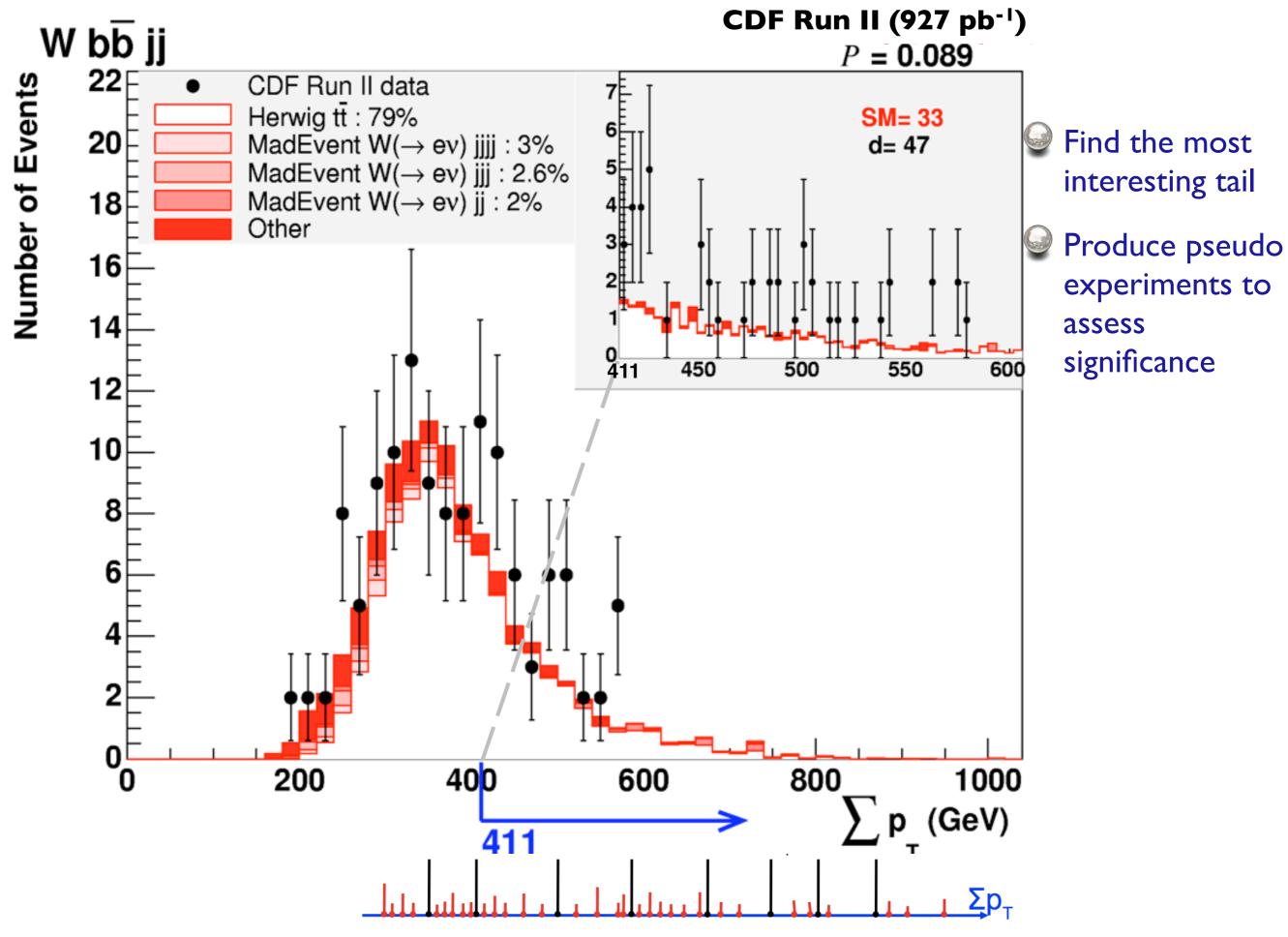
DØ Run I

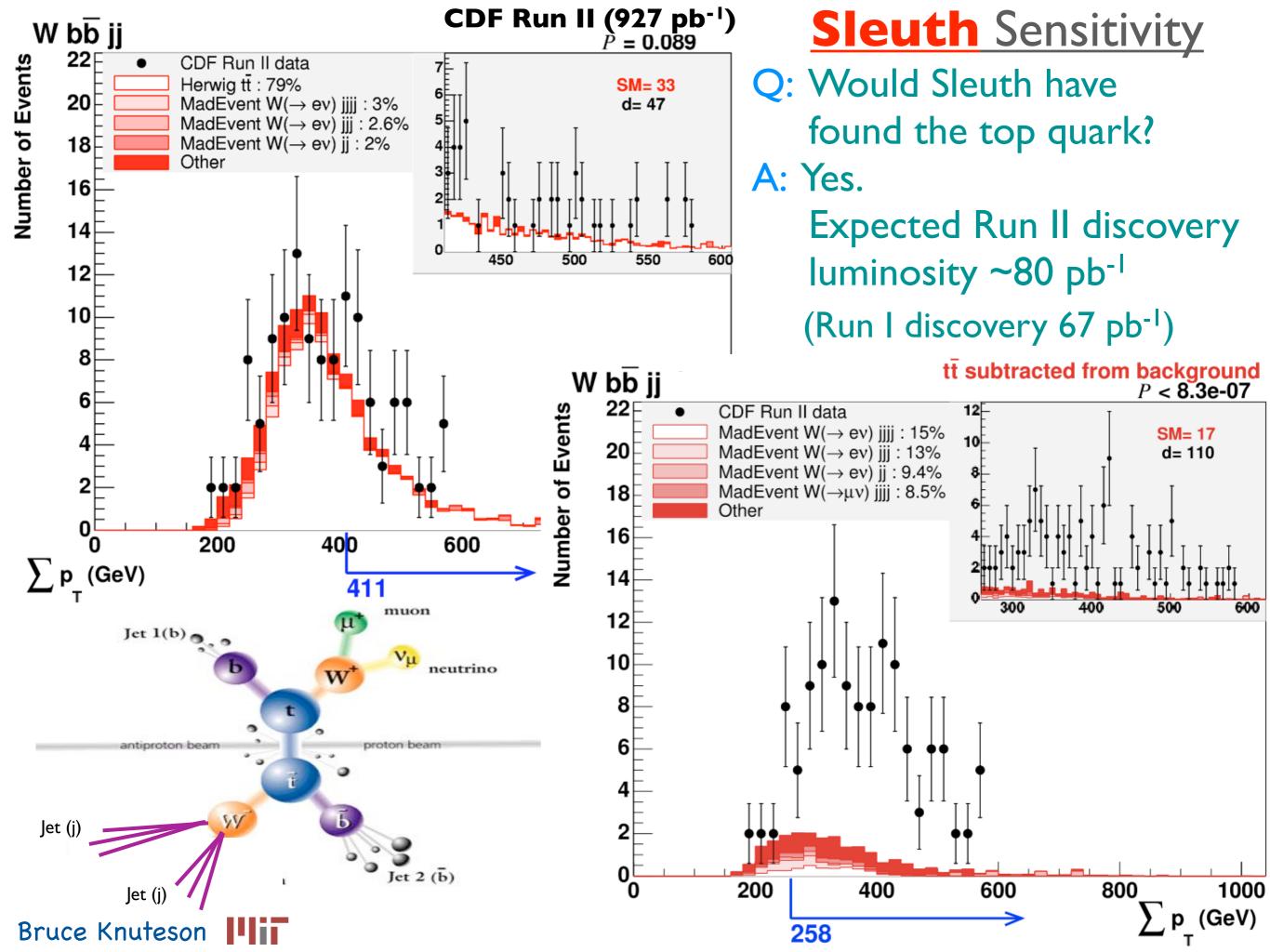
Phys.Rev.D 62:092004,2000

Phys.Rev.D 64:012004,2001

Phys.Rev.Lett.86:3712,2001

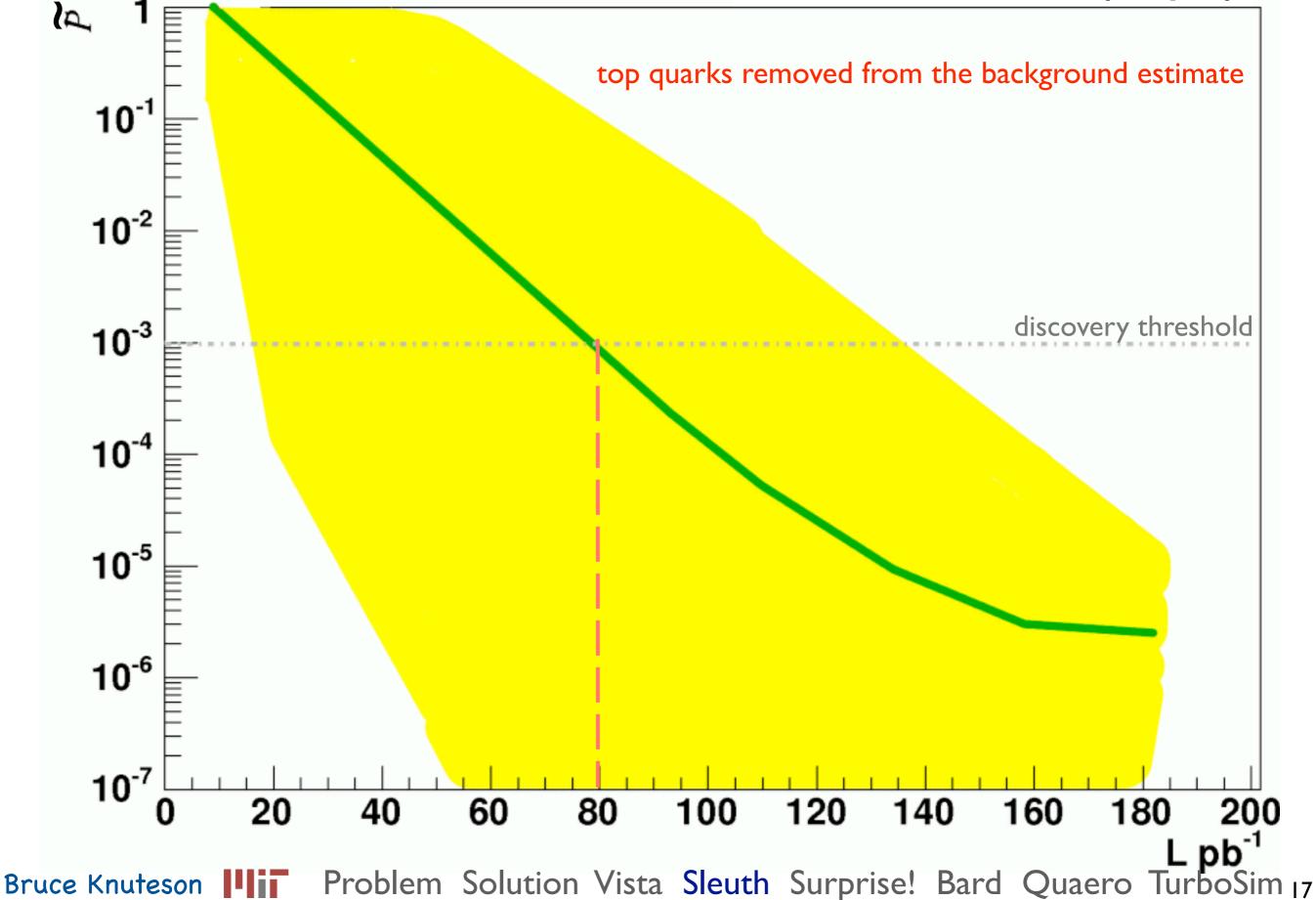
H1 General Search


Phys.Lett.B 602:14-30,2004 arXiv:0705.3721 (summer 2007)


CDF Run II

(prediction) d(hep-ph) arXiv:0712.1311 (submitted to PRD) arXiv:0712.2534 (submitted to PRL)

0001001


Rigorously compute the trials factor associated with looking everywhere

\widetilde{P} vs Luminosity

CDF Run II (927 pb⁻¹)

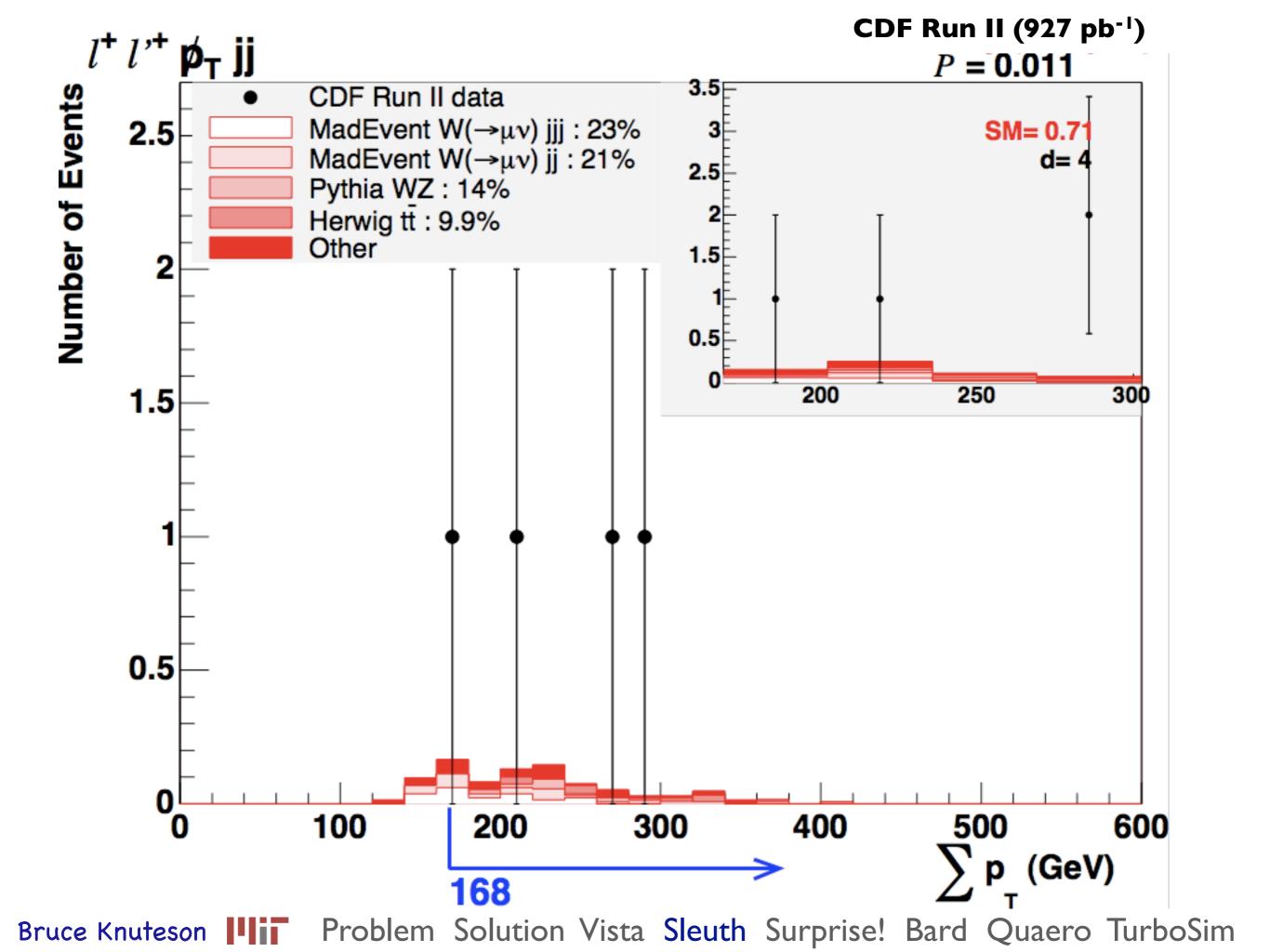
Sample comparison of **Sleuth** to targeted searches CDF Run II (927 pb⁻¹)

Name	Description	Sensitivity	
Model 01	GMSB, $\Lambda = 82.6$ GeV, $\tan \beta = 15$, $\mu > 0$, 1 messenger of $M = 2\Lambda$	0.020.040.060.08 0.1 0.120.140.160.18 0.2 0.2	22 (pb)
Model 02	$Z'_{(250 \mathrm{GeV/c^2})} \to \ell \bar{\ell}$, with $\ell \neq \nu$	1 1.2 14 1.6 1.8 _{Gmin}	assumptions on
Model 03	$Z'_{(700 \mathrm{GeV/c^2})} \to q \bar{q}$	3 3.5 4 4.5 5 5.5 _{G_{min}}	(pb) which Sleuth is based, Sleuth is comparable in sensitivity to a
Model 04	$Z'_{(1{ m TeV/c^2})} ightarrow q \bar{q}$	1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 _{G_{min}}	targeted search
Model 05	mSUGRA, $M_0 = 100$ GeV, $M_{1/2} = 180$ GeV, $A_0 = 0$, tan $\beta = 5$, $\mu > 0$	0 0 5 1 1.5 2 2.5 _{\sigma_min}	3 (pb)
Model 06	mSUGRA, $M_0 = 284$ GeV, $M_{1/2} = 100$ GeV, $A_0 = 0$, tan $\beta = 5$, $\mu < 0$	0.6 0.8 1 1.2 1.4 1.6 1.8 _{\sigma_min}	2 (pb)
Model 07	mSUGRA, $M_0 = 300$ GeV, $M_{1/2} = 200$ GeV, $A_0 = 0$, tan $\beta = 5$, $\mu < 0$	-0.2 0 0.2 0.4 0.6 0.8 1 1.2	(pb)
		better wor	se

Bruce Knuteson Problem Solution Vista Sleuth Surprise! Bard Quaero TurboSim 18

Sleuth
] targeted search

 $\sigma_{discovery}$ (pb)


THE SLEUTH RESULT \sum_{PT} statistic

arXiv:0712.1311 (submitted to PRD) arXiv:0712.2534 (submitted to PRL)

CDF Run II (927 pb⁻¹)

Sleuth@CDFII result

(top 5)		o experiments in th eresting as CDF da	
Sleuth Fina	al State	${\cal P}$	$\tilde{\mathcal{P}} = 0.46$
$b\overline{b}$		0.0055	
j p		0.0092	46% of pseudo experiments are expected to be as interesting
$\ell^+\ell'^+ pjj$		0.011	Sleuth finds no significant excess
$\ell^+\ell'^+ p$		0.016	in CDF Run II high- p_T data
τp		0.016	This does not prove there is no new physics present

arXiv.org > physics > arXiv:0712.3572

Physics > Data Analysis, Statistics and Probability

A Quantitative Measure of Experimental Scientific Merit

Bruce Knuteson

(Submitted on 20 Dec 2007)

Scientific Merit = how much you learn = how surprised you are at the result = surprisal = -log10(p)

Result	Merit	Cost	Bang per buck
		(M\$)	(Merit per M\$)
τ discovery	3	6e-01	5e+00
J/Ψ discovery	2	1e+01	2e-01
there is no Higgs [†]	1.3	5e+03	3e-04
Υ discovery	5e-01	1	5e-01
null Tevatron I + LEP 2	2e-01	3e+03	6e-05
global null Tevatron IIa	5e-02	3e-01	2e-01
global null Tevatron IIb†	5e-02	3e-01	2e-01
W and Z discoveries	2e-02	5e+02	4e-05
top quark discovery	2e-02	5e+01	4e-04
Higgs discovery [†]	2e-02	5e+03	4e-06
B_s mixing observation	4e-06	1e+01	4e-07
\tilde{g} search	4e-06	1e-01	4e-05
single top discovery [†]	4e-06	5	4e-06
coin comes up heads	0	1e-07	0

Table II, pg 8 † Hypothetical future result

Bruce Knuteson

Problem Solution Vista Sleuth Surprise! Bard Quaero TurboSim 23

Result	Merit	Cost	Bang per buck	
		(M\$)	(Merit per M\$)	
τ discovery	3	6e-01	5e+00	
J/Ψ discovery	2	1e+01	2e-01	
there is no Higgs [†]	1.3	5e+03	3e-04	
Υ discovery	5e-01	1	5e-01	
null Tevatron I + $LEP2$	2e-01	3e+03	6e-05	
global null Tevatron IIa	5e-02	3e-01	2e-01	
global null Tevatron IIb†	5e-02	3e-01	2e-01	
W and Z discoveries	2e-02	5e+02	4e-05	
top quark discovery	2e-02	5e+01	4e-04	Nobel Prize
Higgs discovery [†]	2e-02	5e+03	4e-06	contenders
B_s mixing observation	4e-06	1e+01	4e-07	
\tilde{g} search	4e-06	1e-01	4e-05	
single top discovery [†]	4e-06	5	4e-06	
coin comes up heads	0	1e-07	0	

Table II, pg 8 *†* Hypothetical future result

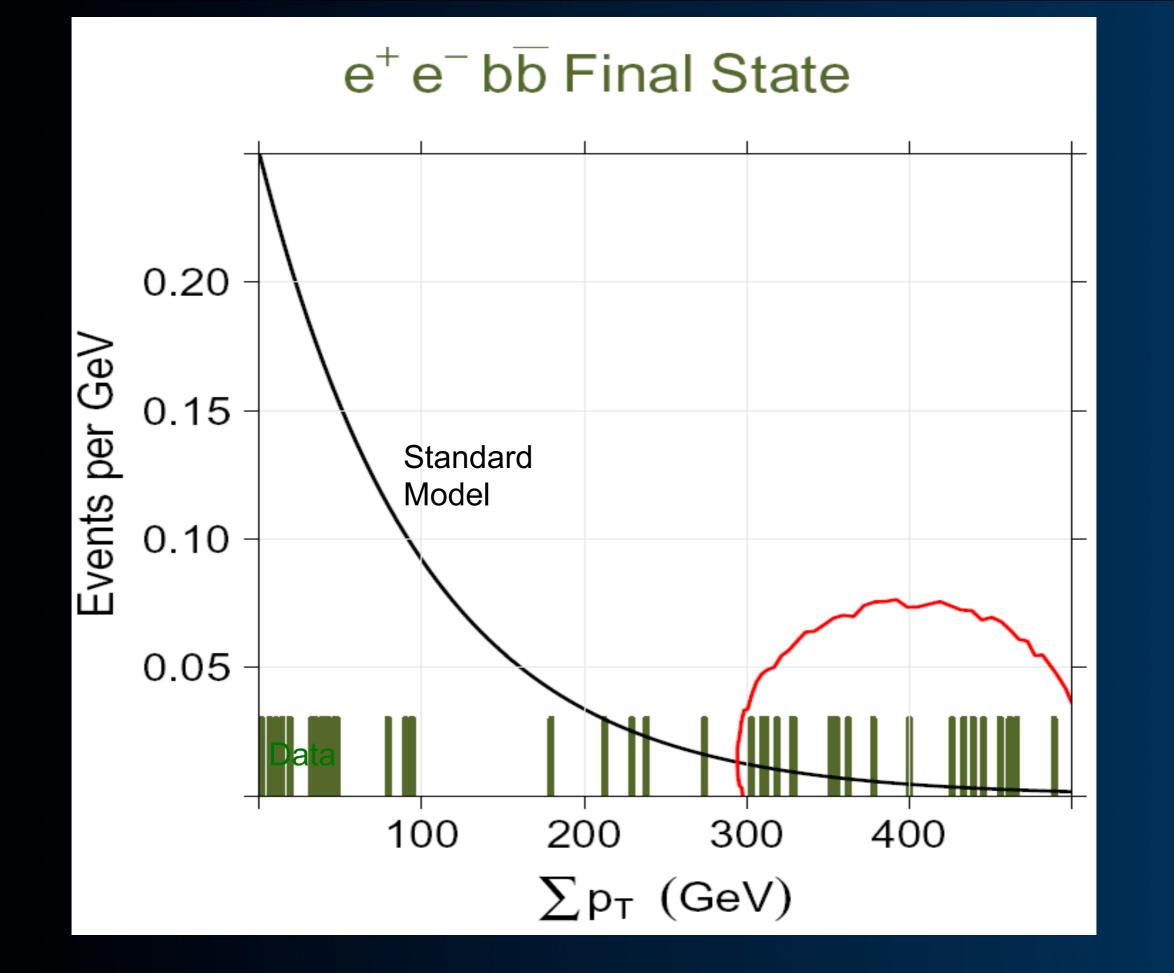
Bruce Knuteson

Problem Solution Vista Sleuth Surprise! Bard Quaero TurboSim 24

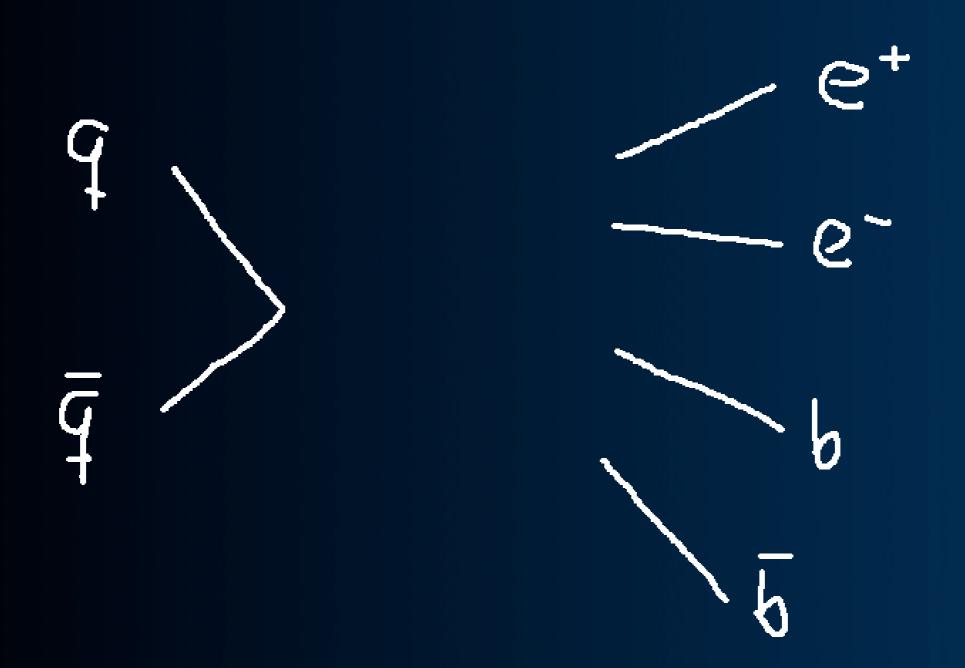
hep-ph/0602101 Knuteson, Mrenna

arXiv.org > hep-ph > arXiv:hep-ph/0602101

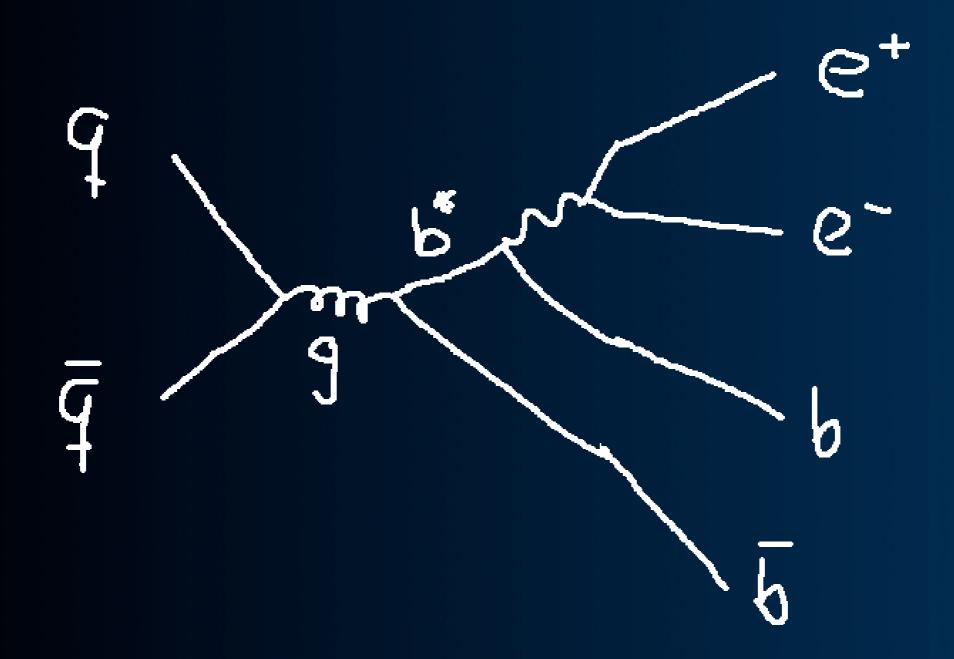
High Energy Physics – Phenomenology

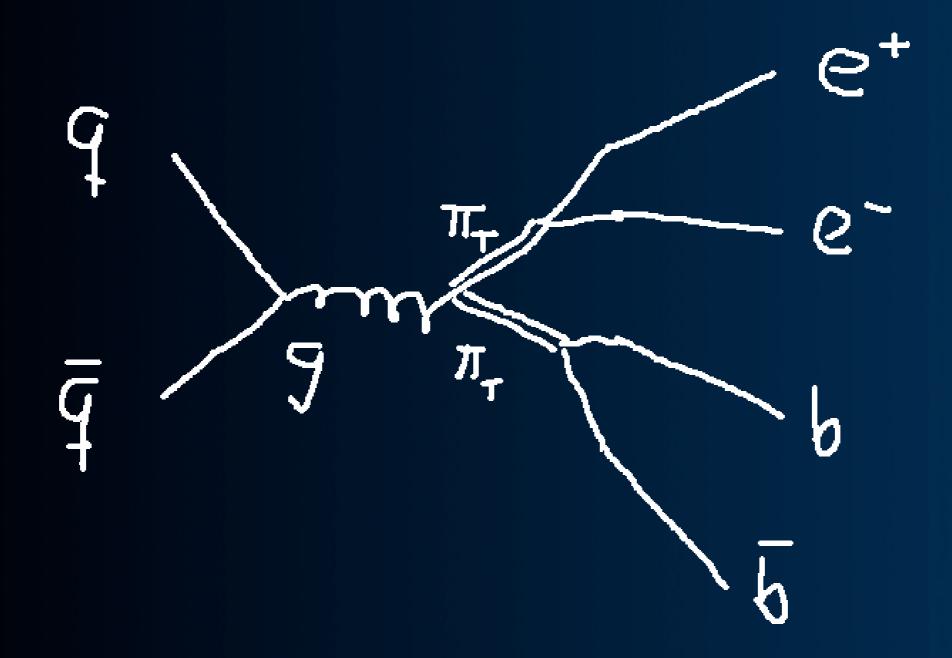

Bard: Interpreting New Frontier Energy Collider Physics

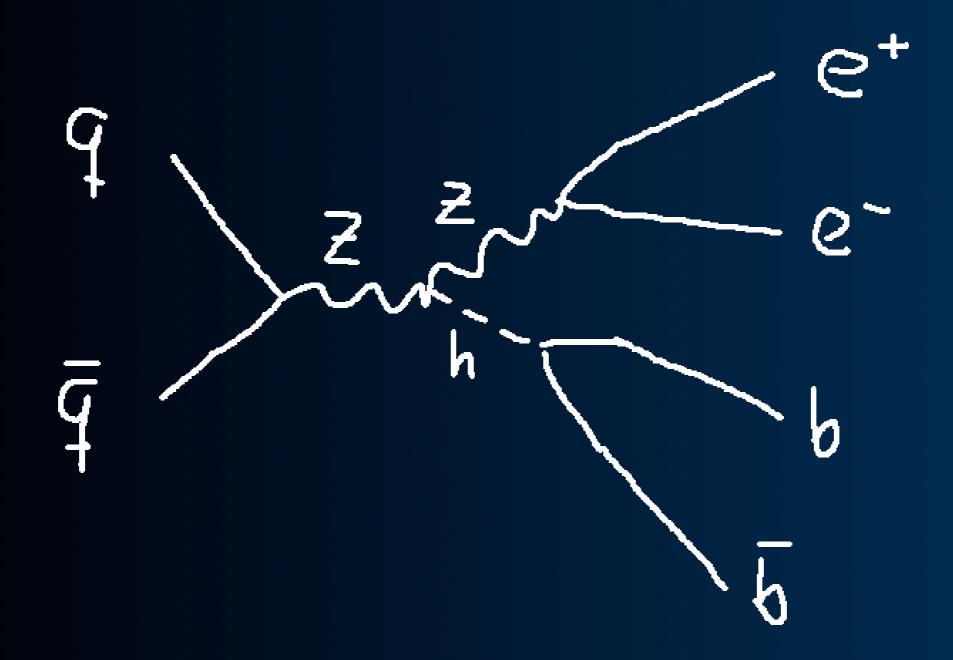
Bruce Knuteson, Stephen Mrenna

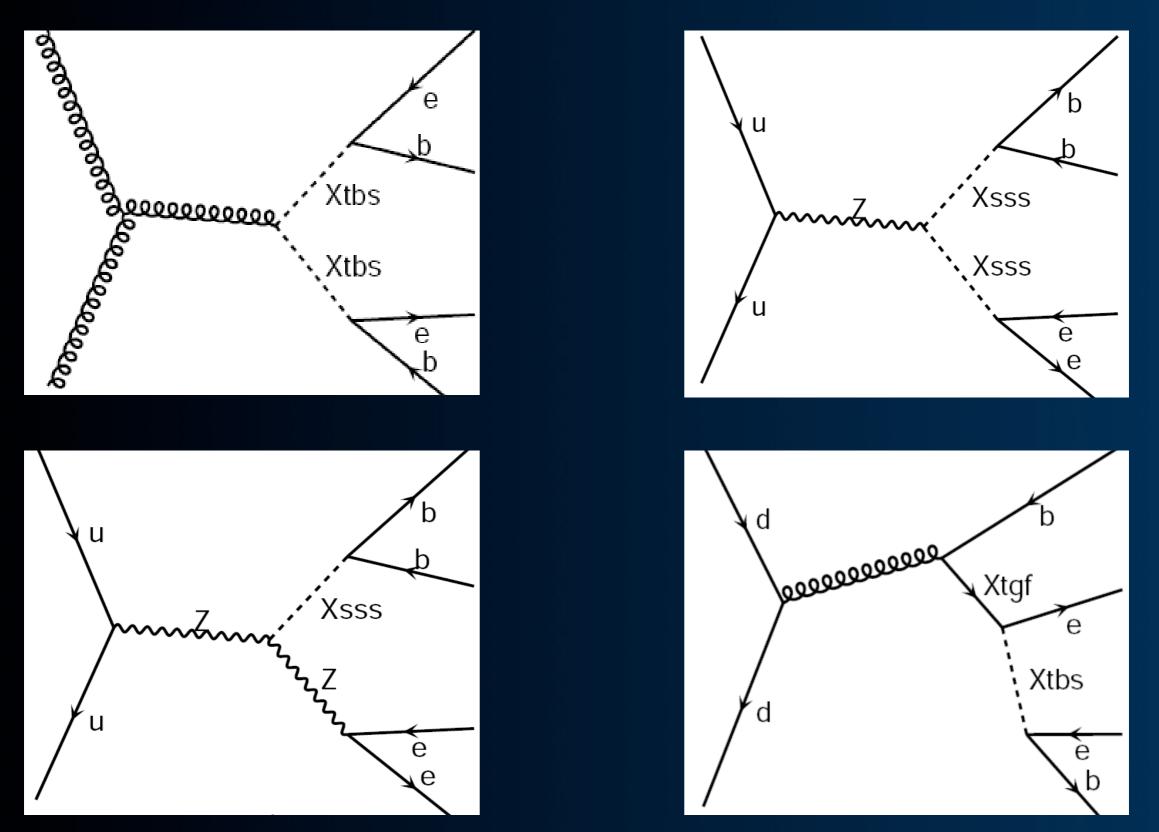

(Submitted on 11 Feb 2006)

No systematic procedure currently exists for inferring the underlying physics from discrepancies observed in high energy collider data. We present Bard, an algorithm designed to facilitate the process of model construction at the energy frontier. Top-down scans of model parameter space are discarded in favor of bottom-up diagrammatic explanations of particular discrepancies, an explanation space that can be exhaustively searched and conveniently tested with existing analysis tools.

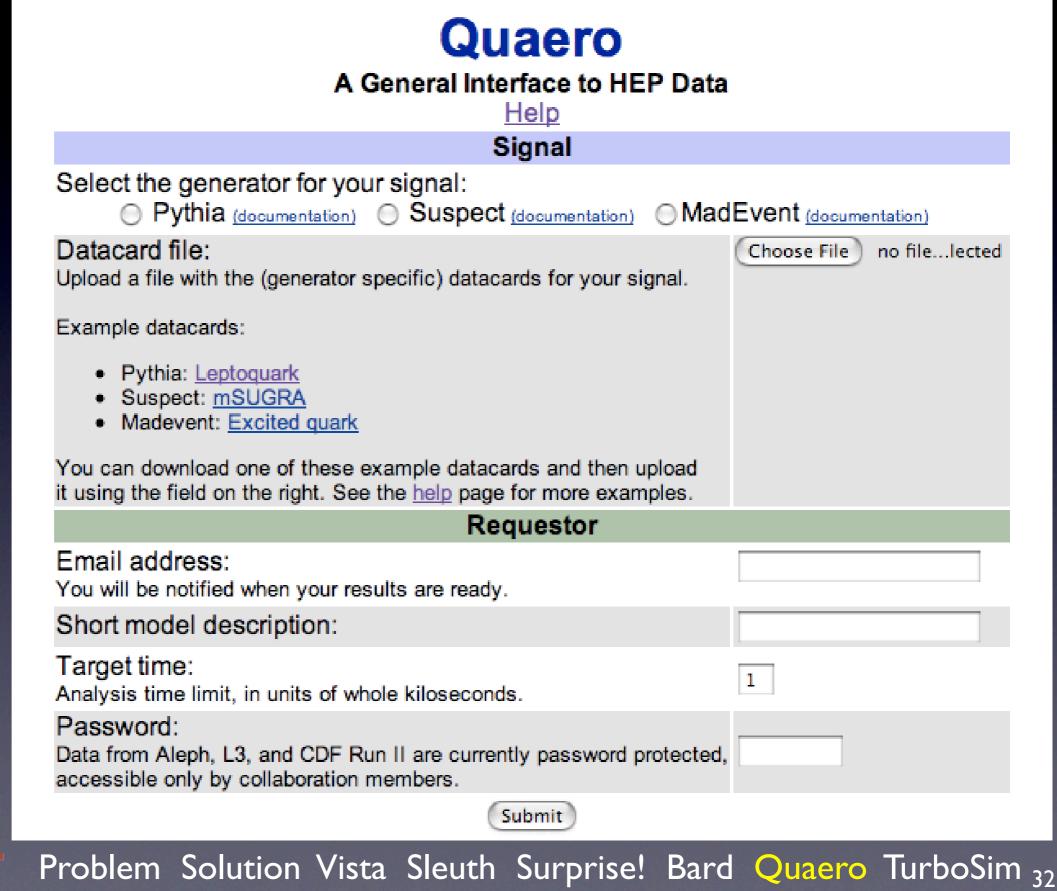

Problem Solution Vista Sleuth Surprise! Bard Quaero TurboSim







Bard stories


Quaero@D0Runl DØ Collaboration Phys.Rev.Lett.87:231801,2001

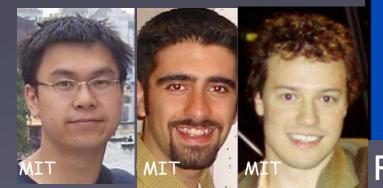
Ċ

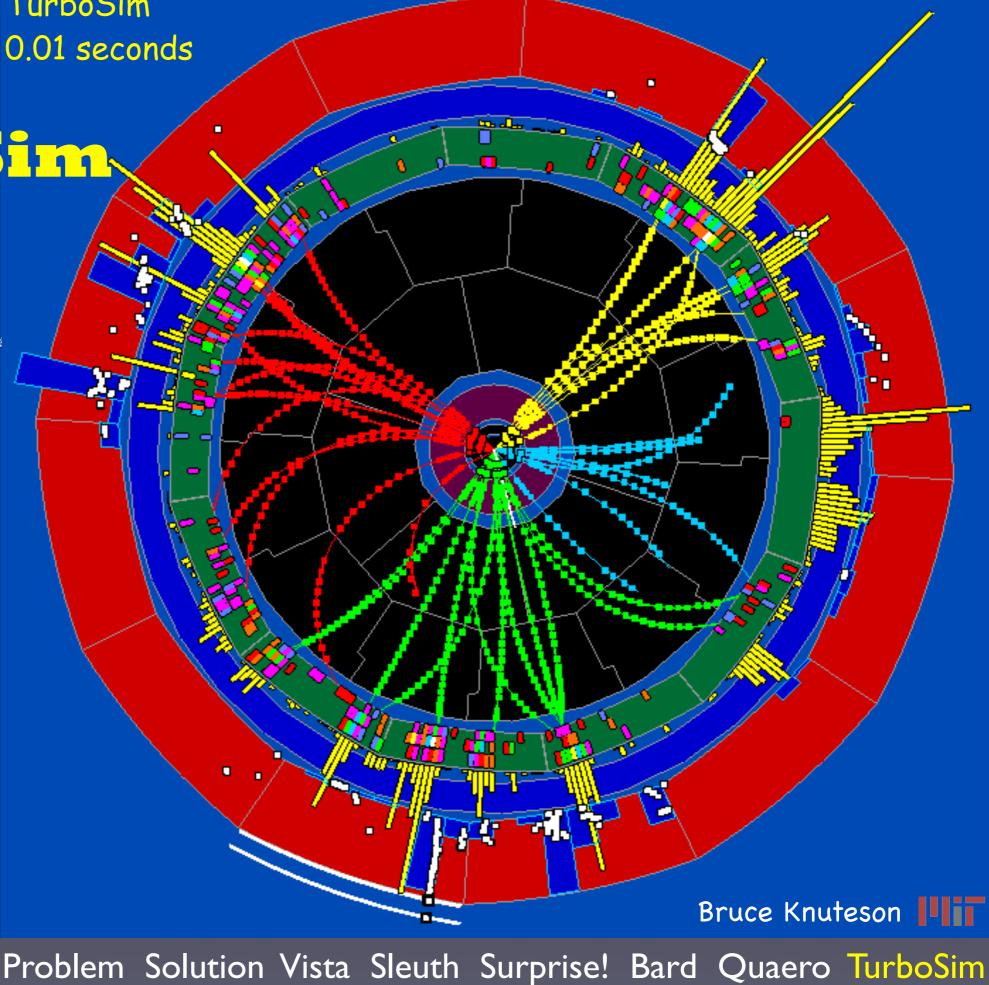
 \pm

Quaero@H1 S. Caron, B. Knuteson Eur.Phys.J.C53:167-175,2008

Quaero

🕙 http://mit.fnal.gov/Quaero/


Bruce Knuteson


Full simulation TurboSim 100 seconds 0.01 seconds

TurboS<mark>im</mark>

A fast detector simulation that tunes itself to any experiment's detailed detector simulation

If a core group of 4 people pursue Vista, it is an endgame

If a core group of 24 people pursue Vista, it is an opening gambit

Bruce Knuteson

Summary

Global Analysis of High-p_T Data

The problem The solution Vista Sleuth Surprise! Bard Quaero TurboSim

LHC New Physics Signatures Workshop, University of Michigan, Jan 6 2008